Drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina.

نویسندگان

  • Víctor Resco
  • Brent E Ewers
  • Wei Sun
  • Travis E Huxman
  • Jake F Weltzin
  • David G Williams
چکیده

The hypothesis that drought intensity constrains the recovery of photosynthesis from drought was tested in the C(3) woody legume Prosopis velutina, and the mechanisms underlying this constraint examined. Hydraulic status and gas exchange were measured the day before a 39 mm precipitation pulse, and up to 7 d afterwards. The experiment was conducted under rainout shelters, established on contrasting soil textures and with different vegetation cover at the Santa Rita Experimental Range in southeastern Arizona, USA. Rates of photosynthesis and stomatal conductance after re-watering, as well as the number of days necessary for photosynthesis to recover after re-watering, were negatively correlated with predawn water potential, a measure of drought intensity (R(2) = 0.83, 0.64 and 0.92, respectively). Photosynthetic recovery was incomplete when the vascular capacity for water transport had been severely impaired (percentage loss of hydraulic conductance > 80%) during the drought, which largely increased stomatal limitations. However, changes in biochemical capacity or in mesophyll conductance did not explain the observed pattern of photosynthesis recovery. Although the control that hydraulic limitations impose on photosynthesis recovery had been previously inferred, the first empirical test of this concept is reported here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.

Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions rang...

متن کامل

Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state trans...

متن کامل

Hydraulic failure defines the recovery and point of death in water-stressed conifers.

This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering...

متن کامل

Stable Isotopes Issue

Plant metabolic activity in arid and semi-arid environments is largely tied to episodic precipitation events or ‘‘pulses’’. The ability of plants to take up and utilize rain pulses during the growing season in these water-limited ecosystems is determined in part by pulse timing, intensity and amount, and by hydrological properties of the soil that translate precipitation into plant-available so...

متن کامل

Sensitivity of riparian ecosystems in arid and semiarid environments to moisture pulses

Structural and functional dynamics of riparian vegetation in arid and semiarid basins are controlled by hydrological processes operating at local, landscape and catchment scales. However, the importance of growing-season precipitation as a control on evapotranspiration (ET) and carbon cycling in these ecosystems varies considerably across the riparian landscape, depending largely on access to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 181 3  شماره 

صفحات  -

تاریخ انتشار 2009